IMPORTANT: This syllabus form should be submitted to OAA (<u>gsbs_academic_affairs@uth.tmc.edu</u>) a week before the start of each semester.

NOTE to STUDENTS: If you need any accommodations related to attending/enrolling in this course, please contact one of the Graduate School's 504 Coordinators, Cheryl Spitzenberger or Natalie Sirisaengtaksin. We ask that you notify GSBS in advance (preferably at least 3 days before the start of the semester) so we can make appropriate arrangements.

Term and Year: Summer 2025	Program Required Course: No	
Course Number and Course Title:	Approval Code: Yes	
Advanced Fluorescence Microscopy – Emphasis in live imaging and state-of-the-art technologies	(If yes, the Course Director or the Course Designee will provide the approval code.)	
Credit Hours: 3	Audit Permitted: Yes	
Prerequisites (if any): N/A	Classes Begin: May 20 th ,2025	
	Classes End: July 3 rd ,2025	
Meeting Location: GSBS Classroom	Final Exam Week: July 3 rd (Projects Presentation)	
Building/Room#: BSRB S3.8371	, (,	

Class Meeting Schedule

Day	Time	
May (20,22,27,29) June (3,5,10,12,17,24,26,30) July (3 rd)	9am to 11 am	
Course Director Name and Degree: Adriana Paulucci, Ph.D.	Instructor/s (Use additional page as needed)	
Title: Principal Research Scientist, Director- Genetics Advanced Microscopy Laboratory	1.Name and Degree: Adriana Paulucci, Ph.D Institution: MDACC	
Department: Genetics Institution: MDACC Email Address: <u>apaulucci@mdanderson.org</u> Contact Number: 713-794 1159	Email Address: <u>apaulucci@mdanderson.org</u> 2. Name and Degree: Travis Moore, Ph.D. Institution: UTH Email Address: <u>travis.i.moore@uth.tmc.edu</u>	
Course Co-Director/s: (if any) Name and Degree: Travis Moore, Ph.D. Title: Assistant Professor, Director – Center for Advanced Microscopy	3. Name and Degree: Leoncio Vergara, Ph.D Institution: Texas A&M Email Address: <u>leovergara@tamu.edu</u>	

Department: Department of Integrative Biology and	4. Name and Degree: Alloysius Budi Utama, Ph.D.		
Pharmacology	Institution: Rice University		
Institution: UTH	Email Address: <u>budiutama@rice.edu</u>		
Email Address: travis.i.moore@uth.tmc.edu	5. Name and Degree: Allan Ferreon, Ph.D		
Contact Number: 713-500-6514	Institution: Baylor College of Medicine		
NOTE: Office hours are available by request. Please email me to arrange a time to meet.	Email Address: <u>allan.ferreon@bcm.edu</u>		
	6. Name and Degree: Reid Powell, Ph.D		
Teaching Assistant: (if any)	Institution: Texa A&M		
Name and Email Address: : Ryan Durham, Ph.D.	Email Address: <u>rpowell@tamu.edu</u>		
Institution: UTH	7. Name and Degree: Anna Karin Gustavsson, Ph.D		
Email Address: <u>Ryan.Durham@uth.tmc.edu</u>	Institution: Rice University		
	Email Address: ag134@rice.edu		

Course Description:

The Advanced Fluorescence Microscopy course will teach basic and advanced principles of fluorescence microscopy with special emphasis in live imaging and state-of-the-art technologies. Basic principles will include basic Fluorescence Spectroscopy and Spectral Analysis and Unmixing, Microscope Architecture and Proper Adjustments, Sample Preparation and Choice of proper fluorophores, endogenous probes and biosensors. It will explain Widefield versus Optical sectioning microscopy and Confocal Microscopy in depth. The course will take an in depth look into advanced microscopy modalities including super-resolution (SIM, STED, SoRa, STORM) and the latest innovations in confocal super-resolution. It will teach live imaging TIRF (total internal reflection) and TIRF use for single molecule studies. A great emphasis will be given to live imaging to study protein dynamics inside tissues, cells, and small organisms, such as actin dynamics. The Live Imaging Modalities will also include Spinning Disk with SoRa super-resolution, lightsheet, dual camera systems, multiphoton, microfluidics and high-content imaging. Technologies such as Ratiometric Imaging (ex. Calcium, pH, NADH), Ablation (Including DNA ablation), Traction Force Microscopy, FCS (Fluorescence Correlation Spectroscopy), FRAP (Fluorescence Recovery After Photobleaching), FRET (Forster Resonance Energy Transfer) and FLIM (Fluorescence Lifetime Imaging) will also be covered in detail by experts in these fields. The course will also focus on proper image analysis and visualization according to current published microscopy guidelines. The main objective is to teach students how they can combine state-of-the-art technologies and advanced microscopy modalities to excel in their projects. At the end of this course students will be able to generate hypotheses that include state-of-the-art microscopy and, most importantly, they will be able to explain the microscopy and will be able to produce high quality microscopy data that follows the current microscopy guidelines for data quality and reproducibility.

Textbook/Supplemental Reading Materials (if any)

- Handbook of Biological Confocal Microscopy by James Pawley (consultation only)
- Instructors will provide articles and chapters that supplement classes

Course Objective/s:

Upon successful completion of this course, students will be able to properly choose and apply microscopy modalities and technologies to their current projects. They will present the microscopy related portion of their projects or hypothetical projects and they will have to write and present a short project with aims introducing the proper microscopy modalities and technologies chosen for their projects. During this final presentation they will have to explain how the microscopy modalities and technologies work and how it addresses their biological questions and they will have to show the experimental designs and methods that they will use for analysing their data.

Specific Learning Objectives:

- 1. Basic and advanced modalities of Fluorescence Microscopy
- 2. Learn how to combine proper technologies to answer questions that go beyond the optical limit resolution. That means know how and when to use FRET, FRAP, FCS, ABLATION, Photo-activation, Traction Force Microcopy, FLIM, DNA paint, etc.
- 3. How to plan their microscopy experiment properly from sample preparation to data collection. How to properly store, analyze, write methods, and present microscopy data.
- 4. How to follow the current microscopy rigor guidelines for data quality and reproducibility.
- 5. How to excel on their projects by using the right microscopy modality and technology, and how to write properly the microscopy part of their projects.

Student Responsibilities and Expectations: Students enrolled in this course will be expected to perform the following activities each week.

- 1- Attend and participate in 2 hours lectures every week. At the end of classes there will be either breakouts or round tables that will allow for evaluation of student progress.
- 2- Attend and participate in 2 hours lab each week.
- 3- Make proper notes and save data from labs to be analyzed latter.
- 4- Students are expected to attend the Image Analysis and Breakout classes (considered major part of grading)
- 5- Prepare for laboratories in advance by meeting their lab-mates and to pose questions to course director and co-director.
- 6- Prepare for the final presentation. A hypothetical or actual project must be presented that inlude several microscopy modalities and few technologies. Students will present how samples will be prepared, data will be collect and what they expect for results. To achieve this objective students will have to meet outside of class and they are also encouraged to meet Dr. Paulucci and Dr. Moore to help with project development)
- 7- "Plagiarism and failure to properly cite scientific literature and other sources will not be tolerated and are grounds for dismissal from the course and further GSBS disciplinary action. Cheating or engaging in unethical behavior during examinations (quizzes and final) will be grounds for dismissal from the course without credit and further GSBS disciplinary action"

Grading System: Letter Grade (A-F)

Percentage	Description	
Homework (20 %)	Students will have to prepare for laboratory classes together with their labmates. They will also have to meet their groups to discuss their projects and their final presentation. They will be encouraged to bring questions to Dr. Paulucci and Dr. Moore after each classs during round table for discussions.	
Imaging Analysis Exercises Quiz (10%)	Students will have to analyse their data acquired in the lab with the guidance of intructors. These analyses will count as a test, or quiz.	
Presentation (30 %)	Students Final Detailed Presentation of 30 minutes per group. They will have to present a hyphtetical project with chosen microscopy modalities and techologies, explain how they work, how they would collect their data and how they would analyse the data. They will have to answer questions from their peers and instructors.	
Workshop or Breakout-Session (10%)	The breakouts will be interactive and involving image analysis and advanced microscopy data interpretation	
Participation and/or Attendance (30%)	Students are expected to attend 2 hours lectures (TUE) an 2 hours lab (THU) per week. Participation will be evaluated in each class/lab.	

Student Assessment and Grading Criteria: (May include the following:)

CLASS SCHEDULE

Date	Duration (Hour(s) taught by lecturer)	Lecture Topic	Lecturer/s
May 20 th	1hour	Principles of Light Propagation and Fluorescence. Sample Preparation.	Adriana Paulucci
May 20 th	1hour	Cameras and Image digitalization. Introduction to Resolution and Image Analysis	Leoncio Vergara
May 22 nd (Lab)	1 hour	Setting up a microscope for widefield and brightfield. System Maintenance and Optical Aberrations	Adriana Paulucci
May 22 nd (Lab)	1hour	Imaging Fluorescent Samples. Proper Adjustments, choices of objectives and Corrections	Leoncio Vergara
May 27th	45 min	Optical Sectioning and Confocal Microscopy, Spatial Array Detectors for Confocal Super- Resolution	Budi Utama
May 27 th	45 min	Colocalization, Autofluorescence. Crosstalk, Unmixing and Introduction to FRET	Adriana Paulucci
May 27 th	30 min	Discussion and question- round table Preparation for Lab	Adriana and Budi
May 29 th (Lab)	1 hour	Confocal Imaging proper adjustments	Budi Utama
May 29 th (Lab)	1 hour	Spectral Unmixing and FRET with confocal Introduction to Live imaging (including FRAP	Adriana Paulucci
June 3 rd	45 min	ABLATION and Ratiometric Imaging) Live imaging with dual camera systems, TIRF and	Adriana Paulucci
June 3 rd	45 min	Traction Force Microscopy and Speckle Microscopy Discussion and questions- round table	Travis Moore
June 3rd June 5 th (Lab)	30 min 50min	Preparation for Lab	Adriana P. and Travis M. Adriana Paulucci
June 5 th (Lab)	50min	TIRF and dual camera system to study actin cytoskeleton dynamics	Travis Moore
June 10th	1 hour	Super-Resolution STED, STORM, MINFLUX and SIM	Travis Moore
June 10th	1 hour	Breakout- Live Image Analysis- Students will present data analysis from their previous lab	Travis M. and Adriana P.
June 12 th (Lab)	2 hours	Super-Resolution Lab (SIM, STORM AND STED)	Travis M and Adriana P.
June 17th	1 hour	Multiphoton, FLIM and Clearing Methods	Leoncio Vergara

· · · · · · · · · · · · · · · · · · ·			
June 17 th (lab)	1 hour	FLIM laboratory	Leoncio Vergara
		FIJI Image Analysis, quantification with Rigor,	
Jun 24 th	1 hour	Planning proper Acquisition Matters	Leoncio Vergara
		Breakout- FIJI Image Analysis	
Jun 24 th	1 hour	Students will analyze images from previous lab	Leoncio Vergara
Jun 26 th	1 hour	High Content Imaging and Analysis	Reid Powell
		Breakout- image analysis using open-source	
Jun 26 th	1 hour	software	Reid Powell
		Single-molecule tracking and super-resolution	
		imaging in 3D using light sheet illumination and	
		microfluidics	
Jun 30 th	1 hour		Anna Karin Gustavsson
		Fluorescence Correlation Spectroscopy and Single	
Jun 30 th	1 hour	Molecule Studies	Allan Ferreon
July 3rd	2 hours	Students Projects Presentations	Adriana P. and Travis M.

NOTE: There will be a total of 13 hours dedicated to lectures, 8 hours dedicated to laboratory classes, 3 hours dedicated to breakout involving image analysis and 2 hours for students final presentations, totalizing 26 hours of in- class activities. We expect students to dedicate at least 20 hours outside of class to read articles and materials, prepare projects and presentation and discuss and prepare for the labs. Students will be encouraged to meet with course director (Dr. Paulucci) and co-director (Dr. Moore) to discuss their final projects plan and presentation in advance. They are expected to save some time for this outside of class activity.

Our instructors: All main instructors for this course have many years of experience teaching graduation school with many years of experience in microscopy and managing microscopy laboratories.

AP/jal